УДК 637.174.127 DOI: 10.26897/2074-0840-2022-3-31-34

ВЛИЯНИЕ ПОРОДНОЙ ПРИНАДЛЕЖНОСТИ КОЗ НА МОЛОЧНУЮ ПРОДУКТИВНОСТЬ, БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ МОЛОКА И ЕГО ПИЩЕВУЮ ЦЕННОСТЬ

М.В. ЗАБЕЛИНА¹, Т.Б. ЛЕДЯЕВ¹, Т.С. ПРЕОБРАЖЕНСКАЯ¹, Л.В. ДАНИЛОВА²

 1 ФГБОУ ВО «Саратовский ГАУ им. Н.И. Вавилова»; 2 Московский государственный университет технологий и управления им. К.Г. Разумовского (ПКУ)

INFLUENCE OF THE BREED AFFILIATION OF GOATS ON MILK PRODUCTIVITY, BIOCHEMICAL INDICATORS OF MILK AND ITS NUTRITIONAL VALUE

M.V. ZABELINA¹, T.B. LEDYAEV¹, T.S. PREOBRAZHENSKAYA¹, L.V. DANILOVA²

¹ Saratov State Agrarian University named after N.I. Vavilov; ² Moscow State University of Technology and Management named after K.G. Razumovsky (PKU)

Аннотация. В статье представлены результаты исследования молочной продуктивности, биохимических показателей, качественного состава, пищевой ценности молока зааненской и нубийской пород коз за 305 дней 1 и 3 лактаций.

Ключевые слова: нубийская порода коз, зааненская порода коз, лактация, среднесуточный удой, коэффициент молочности, жир, белок, казеин, лактоза, калорийность.

Summary. The article presents the results of a study of milk productivity, biochemical parameters, qualitative composition, nutritional value of milk of Zaanen and Nubian goat breeds for 305 days of 1 and 3 lactations.

Keywords: Nubian goat breed, Saanen goat breed, lactation, average daily milk yield, milk ratio, fat, protein, casein, lactose, calories.

России промышленно освоено, в основном, коро-Вые молоко, но тем не менее, необходимо отметить, что в различных регионах нашей страны стали активно заниматься и молочным козоводством. Главными зонами распространения коз молочного направления продуктивности являются Северо-Западный, Северо-Кавказский, Центрально-Черноземный, Поволжский и Волго-Вятский районы. Особенно заметно, насколько возрос интерес к козьему молоку у производителей, которые занимаются производством функциональных продуктов питания. В первую очередь, это связано с тем, что усвояемость козьего молока составляет 97%, в то время как коровьего 65%. Высокая переваримость именно козьего молока предопределяет его употребление всеми категориями населения. Бесспорно, оно по своим характеристикам занимает ведущую позицию среди других видов молочного сырья и обладает непревзойденными лечебными свойствами: антианемическими, антиинфекционными и антигеморрогическими. Лизоцим, входящий в состав белков молока коз, дает возможность обладать ему бактерицидными и ранозаживляющими свойствами, а также нормализует микрофлору кишечника.

Молоко коз по химическому составу является непростой полидисперсной системой, в которой роль дисперсной среды играет вода, а роль дисперсной фазы веществ, которые находятся в молекулярном, коллоидном и эмульсионном виде. Лактоза и минеральные вещества составляют молекулярные и ионные растворы. А белки находятся в растворенном (альбумины и глобулины) и коллоидном (казеин) состоянии, молочный жир представлен в виде эмульсии. При этом порода и происхождение животного оказывают определенное влияние на состав молока [6]. Изменения претерпевают не только соотношения определенных компонентов, но и их химическая структура. Поэтому биохимический состав молока коз непременно зависит от условий их кормления, возраста, периода и числа лактаций, и ряда других причин [1, 2].

Цель работы состоит в изучении биохимических показателей и качества молока коз разных генотипов и разных лактаций, что в целом позволит отразить общую картину биологических, физических и химических свойств козьего молока и оценить его пищевую ценность.

Материалы и методы. Для исследований биохимических показателей было отобрано молоко от коз зааненской и нубийской пород 1-й и 3-ей лактаций на всем их протяжении. Забор молока проводили в утреннюю дойку. Лабораторные исследования были проведены в учебно-научно-испытательной лаборатории по определению качества пищевой и сельскохозяйственной продукции (УНИЛ). Лаборатория имеет бессрочный аттестат аккредитации (номер аттестата аккредитации RA.RU.21ПЧ96).

Физико-химические показатели молока (содержание жира, белка, молочного сахара, плотность, кислотность и точку замерзания) определяли по общепринятым методикам в соответствие с ГОСТами:

Содержание сухих веществ в молоке определяли расчетным путем. Массовую долю сухого

обезжиренного молочного остатка (СОМО) на приборе «Клевер-2» методом измерения характеристик ультразвука в дистиллированной воде и молочном продукте.

Вязкость определяли на вискозиметре Brookfield DV2T.

Содержание соматических клеток – по ГОСТу 23453-90 «Молоко. Методы определения количества соматических клеток».

Класс бактериальной обсемененности – по ГОСТу 9225-84 «Молоко и молочные продукты. Методы микробиологического анализа».

Калорийность молока — методом расчета по стандартной формуле.

Аминокислотный скор белка (АС) определяли отношением количества незаменимых аминокис-

лот (НАК) в исследуемом белке к количеству этой же аминокислоты в идеальном белке.

Результаты исследования. Козы зааненской и нубийской пород существенно различаются по показателям молочной продуктивности и составу молока. В связи с чем проведение всесторонней оценки этих животных является актуальным.

Анализ молочной продуктивности коз разных генотипов представлен в таблице 1.

Данные таблицы 1 по молочной продуктивности коз разных генотипов показали, что козы зааненской породы превосходили коз нубийской породы по обеим лактациям за 305 дней на 15,08% и на 3,91% (P < 0,05). Тем не менее при этом необходимо сказать, что

Таблица 1

Молочная продуктивность подопытных коз разных генотипов (n = 10) Milk productivity of experimental goats of different genotypes (n = 10)

Показатель	Зааненская		Нубийская	
Показатель	1 лактация	3 лактация	1 лактация	3 лактация
Удой за 305 дней лактации, кг	575,61	636,11	488,80±43,64	611,25±30,86
Среднесуточный удой	2,16±0,14	2,32±0,11	1,73±0,13	1,88±0,09
Максимальный суточный удой	3,15±0,12	3,82±0,15	2,84±0,10	3,16±0,14
Пересчёт молока на базисную жир (3,5%), кг	600,28	706,99	593,54	806,85
Пересчёт молока на базисный белок (3,0%), кг	583,28	680,64	507,14	702,94
Количество молочного жира, кг	21,01	24,74	24,98	28,24
Количество молочного белка, кг	17,50	20,42	16,57	21,09
Коэффициент (индекс) молочности	12,35	11,12	9,00	9,30

Таблица 2

Биохимические показатели и пищевая ценность молока подопытных коз (n = 10)

Biochemical parameters and nutritional value of milk of experimental goats (n = 10)

Показатель	Заане	нская	Нубийская	
	1 лактация	3 лактация	1 лактация	3 лактация
Сухое вещество, %	11,85	12,34	12,86	13,39
COMO, %	8,20	8,45	8,61	8,77
Массовая доля жира, %	3,65	3,89	4,25	4,62
Массовая доля белка, %	3,04	3,21	3,39	3,45
Казеин, %	2,28	2,41	2,42	2,68
Молочный сахар, %	4,42	4,49	4,43	4,51
Минеральные вещества, %	0,74	0,75	0,79	0,81
Калорийность, ккал/100г	64,53	67,75	68,93	74,23
Плотность молока, кг/м ³	1027,5	1028,3	1028,6	1029,0
Кислотность молока, °Т	18,02	18,34	17,79	18,36
Температура замерзания, °С	-0,50	-0,52	-0,55	-0,57
Вязкость, Па*С*10-3	1,5	1,6	1,7	1,8
Соматические клетки, тыс./см3	438,4	442,6	515,3	524,6
Бактериальная обсеменённость, тыс./см ³	до 300	до 300	до 300	до 300

при перерасчете надоев молока на базисную жирность (3,5%) показатели молочной продуктивности по первой лактации были выше у зааненских коз, чем у нубийских на 6,74 кг или 1,12%; по третьей лактации нубийские козы значительно превзошли зааненских, их удой составил 806,85 кг, что на 99,89 кг или 12,34% достоверно выше (P < 0.01). При перерасчете фактической массы молока одновременно по базисной массовой доли белка (3,0%) и по базисной массовой доли жира (3,5%) козы нубийской породы превосходят зааненских по первой и третьей лактациям

на 62,43 кг или на 9,31% и на 171,40 кг или на 18,47% соответственно (P < 0,01). Изменения молочной продуктивности коз разных генотипов и лактаций за 305 дней показали и разный уровень среднесуточных удоев. Превосходство по этим показателям было за козами зааненской породы и составило по первой лактации 0,43 кг или 19,9%, по третьей лактации 0,44 кг или 19%, по максимальному суточному удою по первой лактации 0,31 кг или 9,84%, по третьей лактации 0,66 кг или 17,3% соответственно. Коэффициент молочности является показателем, который определяет эффективность использования животного. Зааненские козы, имея достаточно высокие показатели по удою за лактацию, достоверно превосходили нубийских коз в обеих лактациях на 21,13% за первую лактацию и на 16,37% по третьей лактации соответственно.

Усредненные показатели количественного содержания биохимического состава и пищевой ценности козьего молока представлены в таблице 2.

В зависимости от числа лактаций содержание таких ингредиентов молока коз, как массовая доля жира и белка, казеина, сухого вещества, молочного сахара, минеральных веществ и СОМО претерпевают следующие изменения (табл. 2). Молоко коз нубийской породы по этим компонентам превалирует над молоком зааненских коз. Различия этих показателей по первой лактации составили абс. процентов: по жиру 0,6, по белку 0,35, по казеину 0,14, по сухому веществу 1,01, по молочному сахару 0,01, по минеральным веществам 0,05 и по СОМО 0,41; по третьей лактации соответственно: по жиру 0,73, по белку 0,24; по казеину 0,27, по сухому веществу 1,05, по молочному сахару 0,02, по минеральным веществам 0,06 и по СОМО 0,32 абс.процентов.

Плотность молока по обеим лактациям была выше у нубийских коз, а кислотность была выше у зааненских, но при этом нужно отметить, что оба показателя не выходят за лимитированные пределы нормы.

Вязкость молока почти в два раза больше вязкости воды. И при температуре 20°С для молока разных видов животных составляет от 1,3 до 2,1 Па*С*10⁻³. Вязкость молока коз зааненской породы в обеих лактациях была ниже, чем у коз нубийской породы. Это связано с тем, что молоко нубийских коз в обеих лактациях имеет повышенную массовую долю лактозы, жира, белка и казеина.

Содержание соматических клеток и бактериальная обсеменённость молока козоматок обеих пород в зависимости от числа лактации соответствовали санитарным нормам. Диапазон колебания бактериальной обсемененности и соматических клеток достаточно широкий. Поэтому норма для бактериальной обсемененности составляет от 100 тыс./см³ до 500 тыс./см3. Что касается соматических клеток, то их содержание в молоке составляет от 128 до 1500 тыс./см³. Замечено, что содержание соматических клеток в молоке коз возрастает с увеличением жирности молока и числом лактаций (т.е. возрастом), но при этом не зависит от сезонов года. Так, в молоке козоматок зааненской и нубийской пород при повышении массовой доли жира с 3,65 до 3,89% и с 4,25 до 4,62% произошел рост соматических клеток на 4,2 единиц или 0,95% и на 9,3 единиц или 1,77% соответственно [3, 4, 5, 6].

Энергетическая ценность козьего молока козоматок разных генотипов возрастает в зависимости от числа лактаций. У зааненских коз первой лактации по сравнению с третьей она возрастает на 3,22 Ккал, у нубийских коз на 5,3 Ккал соответственно. Однако нужно отметить, что калорийность молока нубийских коз по обеим лактациям преобладает над калорийностью молока зааненских коз. По первой лактации на 6,8%, по третьей на 9,6%.

Более полная картина, определяющая пищевую ценность исследуемого молока, будет показана при расчете основного показателя биологической ценности белка — аминокислотного скора (табл. 3-4).

Таблица 3

Аминокислотный скор белка молока коз зааненской породы

Amino acid score of milk protein of goats of the Saanen breed

	Амино-	1 лактация	3 лактация
Аминокислота	шкала ФАО/ВОЗ, г/100г	аминокислотный скор	
Валин	5,0	1,36	1,30
Изолейцин	4,0	0,76	0,81
Лейцин	7,0	0,82	0,79
Лизин	5,5	0,74	0,76
Метионин + цистин	3,5	1,82	1,89
Треонин	4,0	1,36	1,32
Триптофан	1,0	1,06	1,08
Фенилаланин + тирозин	6,0	1,62	1,67

Таблица 4

Аминокислотный скор белка молока коз нубийской породы

Amino acid score of milk protein of goats of the Nubian breed

Аминокислота	Амино- кислотная шкала ФАО/ВОЗ, г/100г	1 лактация аминоки ск	3 лактация слотный ор
Валин	5,0	1,42	1,32
Изолейцин	4,0	0,72	0,69
Лейцин	7,0	0,80	0,75
Лизин	5,5	0,74	0,70
Метионин + цистин	3,5	1,69	1,63
Треонин	4,0	1,36	1,27
Триптофан	1,0	1,02	1,00
Фенилаланин + тирозин	6,0	1,86	1,74

В идеальном белке величина аминокислотного скора каждой незаменимой кислоты может выражаться в процентах от 0-100% или в долях 0-1. Лимитирующей пищевую ценность аминокислотой считается та, скор которой имеет минимальное значение. В нашем случае изолейцин, лейцин и лизин являются лимитирующими аминокислотами для козьего молока, так как скор по данным аминокислотам меньше 1. При этом в молоке коз зааненской породы первой и третьей лактаций среди лимитирующих аминокислот наименьшее значение было у лизина (0,74-0,76), а у коз нубийской породы этих же лактаций – у изолейцина (0,72-0,69).

Выводы. Исходя из вышеизложенного, надо сказать, что на сегодняшний день приоритетным направлением в козоводстве должно стать форсированное развитие молочного козоводства. Представленная

работа явилась комплексным изучением молочности коз разного генотипа и качественного состава молока и его потребительских свойств.

ЛИТЕРАТУРА

- 1. Нуралиев М.Т. Оценка классного состава и молочной продуктивности стад молочных коз в зависимости от их происхождения / М.Т. Нуралиев, Ю.А. Юлдашбаев, Т.Е. Кенжебаева [и др.] // Вестник науки Казахского агротехнического университета им. С. Сейфуллина. 2022. № 1 (112). С. 352-360. EDN UTQBUI.
- 2. Лукин И.И. Технологические показатели козьего молока / И.И. Лукин, Ю.А. Юлдашбаев, Н.И. Кульмакова // Известия Оренбургского государственного аграрного университета. 2020. N 5 (85). С. 227-230. DOI 10.37670/2073-0853-2020-85-5-227-230. EDN ZBNISP.
- 3. Оспанов А.Б. Исследование физико-химического состава и технологических свойств овечьего и козьего молока в летний период лактации / А.Б. Оспанов, Б.О. Кулжанова, Е.М. Щетинина [и др.] // Хранение и переработка сельхозсырья. -2021. № 2. С. 64-74.
- 4. Карпеня А.М. Содержание соматических клеток и бактериальная обсемененность молока при разных способах его первичной обработки / А.М. Карпеня, В.Н. Подрез, С.Л. Карпеня, Ю.В. Шамич // Ветеринарный журнал Беларуси. 2020. N 2 (13). C. 86-90.
- 5. Курская Ю.А. Оценка качества молока в зависимости от уровня содержания соматических клеток / Ю.А. Курская, Е.А. Пашковская // Современные цифровые технологии в агропромышленном комплексе: Сборник материалов международной научной конференции. В трех томах, Смоленск, 30 апреля 2020 года. Смоленск: Смоленская государственная сельскохозяйственная академия, 2020. С. 133-136.
- 6. Чамурлиев Н.Г. Эффективность производства молока в зависимости от породной принадлежности коз / Н.Г. Чамурлиев, А.С. Шперов, И.С. Шенгелия, А.А. Зыкова // Овцы, козы, шерстяное дело. -2021. № 1.- С. 30-31.- DOI 10.26897/2074-0840-2021-1-30-31.

REFERENCES

1. Nuraliev M.T. Assessment of the class composition and milk productivity of dairy goat herds depending on their origin / M.T. Nuraliev Yu.A. Yuldashbaev,

- T.E. Kenzhebaeva [et al.] // Bulletin of Science of the Kazakh Agrotechnical University named after S. Seifullin. 2022. № 1 (112). Pp. 352-360. EDN UTQBUI.
- 2. Lukin I.I. Technological indicators of goat milk / I.I. Lukin, Yu.A. Yuldashbaev, N.I. Kulmakova // Proceedings of the Orenburg State Agrarian University. —2020. —No. 5 (85). Pp. 227-230. —DOI 10.37670/2073-0853-2020-85-5-227-230. —EDN ZBNISP.
- 3. Ospanov A.B. Investigation of the physico-chemical composition and technological properties of sheep and goat milk in the summer lactation period/A.B. Ospanov, B.O. Kulzhanova, E.M. Shchetinina [et al.] // Storage and processing of agricultural raw materials. 2021. No. 2. pp. 64-74.
- 4. Karpenya A.M. The content of somatic cells and bacterial contamination of milk with different methods of its primary processing / A.M. Karpenya, V.N. Podrez, S.L. Karpenya, Yu.V. Shamich // Veterinary Journal of Belarus. 2020. No. 2 (13). Pp. 86-90.
- 5. Kurskaya Yu.A. Evaluation of milk quality depending on the level of somatic cells content / Yu.A. Kurskaya, E.A. Pashkovskaya // Modern digital technologies in the agro-industrial complex: Collection of materials of the international scientific conference. In three volumes, Smolensk, April 30, 2020. Smolensk: Smolensk State Agricultural Academy, 2020. Pp. 133-136.
- 6. Chamurliev N.G. Milk production efficiency depending onthebreedofgoats/N.G. Chamurliev,A.S. Shperov,I.S. Shengelia, A.A. Zykova // Sheep, goats, wool business. 2021. No. 1. pp. 30-31. DOI 10.26897/2074-0840-2021-1-30-31.

Забелина Маргарита Васильевна, доктор биол. наук, профессор кафедры «Технология производства и переработки продукции животноводства», ФГБОУ ВО «Саратовский ГАУ им. Н.И. Вавилова», тел.: (917) 329-20-17;

Ледяев Тимур Бахтиёрович, аспирант кафедры «Технология производства и переработки продукции животноводства», ФГБОУ ВО «Саратовский ГАУ им. Н.И. Вавилова», e-mail: ledyaev_1995@mail.ru;

Преображенская Татьяна Станиславовна, доцент кафедры «Технология производства и переработки продукции животноводства», ФГБОУ ВО «Саратовский ГАУ им. Н.И. Вавилова»;

Данилова Любовь Витальевна, доцент, Московский государственный университет технологий и управления им. К.Г. Разумовского (ПКУ).